Solving the robot-world hand-eye(s) calibration problem with iterative methods
نویسندگان
چکیده
منابع مشابه
Solving the Robot - World / Hand - Eye Calibration Problem Using the Kronecker Product
This paper constructs a separable closed-form solution to the robot-world/hand-eye calibration problem AX1⁄4YB. Qualifications and properties that determine the uniqueness of X and Y as well as error metrics that measure the accuracy of a given X and Y are given. The formulation of the solution involves the Kronecker product and the singular value decomposition. The method is compared with exis...
متن کاملSimultaneous robot-world and hand-eye calibration
Recently, Zhuang et al. [1] proposed a method that allows simultaneous computation of the rigid transformations from world frame to robot base frame and from hand frame to camera frame. Their method attempts to solve a homogeneous matrix equation of the formAX = ZB. They use quaternions to derive explicit linear solutions for X and Z. In this short paper, we present two new solutions that attem...
متن کاملGeneralized iterative methods for solving double saddle point problem
In this paper, we develop some stationary iterative schemes in block forms for solving double saddle point problem. To this end, we first generalize the Jacobi iterative method and study its convergence under certain condition. Moreover, using a relaxation parameter, the weighted version of the Jacobi method together with its convergence analysis are considered. Furthermore, we extend a method...
متن کاملAn Iterative Approach to the Hand-Eye and Base-World Calibration Problem
In visual servoing applications using a position-based approach and an end-effector-mounted camera, the position and orientation of the camera with respect to the end-effector must be known. This information is frequently represented in the form of a Homogeneous Transformation Matrix (HTM). For special “noise-free” cases, a closed-form solution for this calibration problem can be determined. Ho...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Vision and Applications
سال: 2017
ISSN: 0932-8092,1432-1769
DOI: 10.1007/s00138-017-0841-7